
Scalability / Tests

I created a testing project that runs the project with different settings to quickly see how
changes impact base performance and scalability based on settings like amount of samples.
This measures performance by measuring frame time over X number of frames, to get a
broad idea of performance quickly.

using this project i measured the scalability of differing sample counts before doing any big
optimisations,

This shows that changing base samples, direct light samples and ambient samples all
increase in cost linearly with their sample counts,

Since these samples combine in the march their cost affects each other massively as shown
when increasing them together.



which scales significantly worse, due to for example direct light samples happening per base
sample
Because of this improving the performance of any of these samples or making it so I have to
take less of them has huge benefits on overall performance.

Resolution

Note: these results are from after optimizing texture sizes/precision already, and captured
using nsight multi pass.

Testing differing cloud voxel resolutions, gave an interesting result

Frame times are actually lower with higher resolution clouds
Checking with NSight this is caused because the caches are overused, since at low



resolution a lot of threads use the same voxels it gets bottlenecked by the cache,
While higher resolutions do not have to fight over that so wait less causing way higher SM
usage

Coverage

I also tested how cloud screen coverage affects performance, due to my masking based on
bounds and density and the sphere tracing screen coverage has a big affect becoming way
cheaper when looking at less clouds or away from the AABB,
Due to the big branching this causes it has a limit and does not scale linearly with amount
rendered. This could be improved by doing indirect compute masking passes to reduce
branching a lot.

I didn't graph this since I don't have a solid metric for coverage.

Optimizations

GPU memory usage

After implementing adaptive sampling by sampling a distance field I noticed my performance
going down a lot.
I had added the distance field as a extra channel to my cloud density texture, so this
massively increased memory usage.
But this was not fully needed since it samples outside of a cloud only the distance data is
used.
To improve this I split it into 2 textures instead by splitting them it avoids loading useless
data.
I profiled the impact of this change in pix and noticed this gave a big improvement



Left Seperate textures (2x R32_Float) | Right Combined texture (1x R32B32_Float)
This means delta is change from new to old.

This shows that there is a huge improvement in local memory resident and usage, which
means that the samples are cache hits more often giving a 36% render time reduction.

Ambient sampling,

When profiling i noticed that my marcher was almost fully memory bound, which makes
sense since it has to fetch the voxels per step, and per step in a cloud integrate densities
into the light direction and upwards to get a approximation for ambient light, Which is a lot
more texture
samples.

Nsight showing that there is a lot of memory throughput and texture fetches compared to the
amount of SM throughput:

Running at 8.27ms in total



Since I assume clouds don't change and the ambient integration is always up, I can fully
precalculate this causing it to go from taking SampleCount number of texture fetches per
cloudsample, to taking only 1.

This massively reduced frame time and caused texture fetched and math time to be more
balanced

Running at 3.97ms in total

And this also causes the scalability to go from O(N) to O(1), for runtime sampling, since the
computation gets moved to bake time.

Direct sampling,



The same could be done for direct sampling somewhat,
By calculating the lighting per voxel in a different pass instead of per pixel in the main pass,
it massively reduces the cost of calculating lighting. and it can also be cached to not
calculate all the lighting if it doesn't change.
Since the cache is lower detail, I first do the first 2ish steps normally then sample the cache.

Without cache everything is done in 1 pass, DirectLightSamples is taking up almost all of the
gpu time. (32 per sample(per pixel) light samples)

24,9ms total

When cached, all voxels are calculated in the first pass. This makes gpu time way more
balanced . (2 per pixel(per sample) light samples and 30 cached samples)

9,6ms total

This makes it so I have to do way less samples in total since I can calculate the cached
lighting in chunks over multiple frames, and in most cases even without calculating in
chunks, there are more pixels than there are cache voxels.

Precision

A lot of the (3d)textures I'm using also don't require that much precision, so storing them as
32 bit float textures is a waste. So instead I changed my textures to being 16 bit floats which
improved memory throughput in my shaders a lot.



Here profiling before(top) and after(bottom) of changing the high frequency noise texture to
16bit 2 channels instead of 32 bit 4 channels.

Block compression

My biggest hotspot is fetching the SDF texture

At GPC there was a talk by guerrilla about compressing the SDF for clouds and it giving
them a 30% speedup.
As long as the precision loss always causes values lower it only causes it to have to take 1
extra sample sometimes,
if the precission results in higher values it creates artifacts, so they have a custom bc1
compressor to avoid that.
I implemented their custom BC1 compression in a compute shader making my texture 4x
smaller, but even though my program is limited by texture fetches this gave no improvement
for me, no matter the resolution of the clouds or how spaced they are. This is probably
because my sdf texture was already small enough to fit into cache.

Old SDF Texture, 378x49x382 16Bits pixels

New BC1 Texture, 95x13x382 64bits per block (~4x smaller)

https://graphicsprogrammingconference.com/archive/2025/#how-to-decimate-your-textures-bcn-compression-tricks-in-horizon-forbidden-west


Future optimization opportunities.

A possible improvement would be to cache where/if rays hit in screen space, allowing to skip
empty parts of the sky.

Another good improvement would probably be to split the renderer into more indirect
passes, masking based on depth or bounds hit. Which avoids a huge uneven branch

Apart from these optimization I think most higher level optimizations have been done, the
rest of future optimizations would have to focus on lower level improvements like reducing
the amount of registers being used, which is currently the main bottleneck.


